ELECTRONICA Y MEDIDAS

LEYES DEL ALGEBRA BOOLEANA

El resultado de aplicar cualquiera de las tres operaciones definidas a variables del sistema booleano resulta en otra variable del sistema, y este resultado es único.

Ley conmutativa: La ley conmutativa de la adición para dos variables se describe algebraicamente como

A+B=B+A

Esta ley establece que no importa el orden en el que las variables estén disyuntivadas. En la terminología del algebra booleana, aplicada a los circuitos lógicos, la adición y la operación OR son lo mismo.

AB=BA

Ley asociativa: La ley asociativa de la adición para tres variables se escribe algebraicamente como sigue

A+ (B+C)=(A+B)+C

Esta ley establece que en la disyunción de varias variables, el resultado es el mismo, sin importar el agrupamiento de las mismas.

Ley asociativa en la multiplicación para tres variables se escribe como lo siguiente:

A (BC)= (AB) C

Esta ley establece que, al juntar varias variables no importa el orden en la que estas se agrupen.

Ley distributiva: La ley distributiva para tres variables se describe como siguiente

A (B+C)=AB+AC

Esta ley establece que al disyuntivar varias variables y conjuntiva el resultado con una sola variable es equivalente a conjuntivar la variable sola con cada una de las varias variables y disyuntivar los conjuntos.

El resultado de aplicar cualquiera de las tres operaciones definidas a variables del sistema booleano resulta en otra variable del sistema, y este resultado es único.

Ley de idempotencia:

algebra booleana
algebra booleana

Ley de involución:

algebra booleana

Ley de cancelación:

algebra booleana
algebra booleana

Leyes de De Morgan:

algebra booleana
algebra booleana

PRINCIPIO DE DUALIDAD

El concepto de dualidad permite formalizar este hecho: a toda relación o ley lógica le corresponderá su dual, formada mediante el intercambio de los operadores unión (suma lógica) con los de intersección (producto lógico), y de los 1 con los 0.

Además hay que cambiar cada variable por su negada. Esto causa confusión al aplicarlo en los teoremas básicos, pero es totalmente necesario para la correcta aplicación del principio de dualidad. Véase que esto no modifica la tabla adjunta.

algebra booleana 29 (260K)

El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " º " definido en éste juegos de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana.

Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedades del sistema, el álgebra booleana a menudo emplea los siguientes postulados:

  • Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.
  • Conmutativo. Se dice que un operador binario " º " es conmutativo si A º B = B º A para todos los posibles valores de A y B.
  • Asociativo. Se dice que un operador binario " º " es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.
  • Distributivo. Dos operadores binarios " º " y " % " son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.
  • Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario " º " si A º I = A.
  • Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano " º " si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.

Para nuestros propósitos basaremos el álgebra booleana en el siguiente juego de operadores y valores:

  • Los dos posibles valores en el sistema booleano son cero y uno, a menudo llamaremos a éstos valores respectivamente como falso y verdadero.
  • El símbolo · representa la operación lógica AND. Cuando se utilicen nombres de variables de una sola letra se eliminará el símbolo ·, por lo tanto AB representa la operación lógica AND entre las variables A y B, a esto también le llamamos el producto entre A y B.
  • El símbolo "+" representa la operación lógica OR, decimos que A+B es la operación lógica OR entre A y B, también llamada la suma de A y B.
  • El complemento lógico, negación ó NOT es un operador unitario, en éste texto utilizaremos el símbolo " ' " para denotar la negación lógica, por ejemplo, A' denota la operación lógica NOT de A.
  • Si varios operadores diferentes aparecen en una sola expresión booleana, el resultado de la expresión depende de la procedencia de los operadores, la cual es de mayor a menor, paréntesis, operador lógico NOT, operador lógico AND y operador lógico OR. Tanto el operador lógico AND como el OR son asociativos por la izquierda. Si dos operadores con la misma procedencia están adyacentes, entonces se evalúan de izquierda a derecha. El operador lógico NOT es asociativo por la derecha. Utilizaremos además los siguientes postulados:
  1. P1 El álgebra booleana es cerrada bajo las operaciones AND, OR y NOT
  2. P2 El elemento de identidad con respecto a · es uno y con respecto a + es cero. No existe elemento de identidad para el operador NOT
  3. P3 Los operadores · y + son conmutativos.
  4. P4 · y + son distributivos uno con respecto al otro, esto es, A· (B+C) = (A·B)+(A·C) y A+ (B·C) = (A+B) ·(A+C).
  5. P5 Para cada valor A existe un valor A' tal que A·A' = 0 y A+A' = 1. Éste valor es el complemento lógico de A.
  6. P6 · y + son ambos asociativos, ésto es, (AB) C = A (BC) y (A+B)+C = A+ (B+C).

Es posible probar todos los teoremas del álgebra booleana utilizando éstos postulados, además es buena idea familiarizarse con algunos de los teoremas más importantes de los cuales podemos mencionar los siguientes:

  • Teorema 1: A + A = A
  • Teorema 2: A · A = A
  • Teorema 3: A + 0 = A
  • Teorema 4: A · 1 = A
  • Teorema 5: A · 0 = 0
  • Teorema 6: A + 1 = 1
  • Teorema 7: (A + B)' = A' · B'
  • Teorema 8: (A · B)' = A' + B'
  • Teorema 9: A + A · B = A
  • Teorema 10: A · (A + B) = A
  • Teorema 11: A + A'B = A + B
  • Teorema 12: A' · (A + B') = A'B'
  • Teorema 13: AB + AB' = A
  • Teorema 14: (A' + B') · (A' + B) = A'
  • Teorema 15: A + A' = 1
  • Teorema 16: A · A' = 0

Los teoremas siete y ocho son conocidos como Teoremas de De Morgan en honor al matemático que los descubrió.

Características:

Un álgebra de Boole es un conjunto en el que destacan las siguientes características:

  1. Se han definido dos funciones binarias (que necesitan dos parámetros) que llamaremos aditiva (que representaremos por x+ y) y multiplicativa (que representaremos por xy) y una función monaria (de un solo parámetro) que representaremos por x'.
  2. Se han definido dos elementos (que designaremos por 0 y 1)
  3. Tiene las siguientes propiedades:

  • Conmutativa respecto a la primera función: x + y = y + x

    Conmutativa respecto a la segunda función: xy = yx

    Asociativa respecto a la primera función: (x + y) + z = x + (y +z)

    Asociativa respecto a la segunda función: (xy)z = x(yz)

    Distributiva respecto a la primera función: (x +y)z = xz + yz

    Distributiva respecto a la segunda función: (xy) + z = (x + z)( y + z)

    Identidad respecto a la primera función: x + 0 = x

    Identidad respecto a la segunda función: x1 = x

    Complemento respecto a la primera función: x + x' = 1

    Complemento respecto a la segunda función: xx' = 0

Propiedades Del Álgebra De Boole

Idempotente respecto a la primera función: x + x = x

Idempotente respecto a la segunda función: xx = x

Maximalidad del 1: x + 1 = 1

Minimalidad del 0: x0 = 0

Involución: x'' = x

Inmersión respecto a la primera función: x + (xy) = x

Inmersión respecto a la segunda función: x(x + y) = x

Ley de Morgan respecto a la primera función: (x + y)' = x'y'

Ley de Morgan respecto a la segunda función: (xy)' = x' + y'

Función Booleana

Una función booleana es una aplicación de A x A x A x....A en A, siendo A un conjunto cuyos elementos son 0 y 1 y tiene estructura de álgebra de Boole. Supongamos que cuatro amigos deciden ir al cine si lo quiere la mayoría. Cada uno puede votar si o no. Representemos el voto de cada uno por xi. La función devolverá sí (1) cuando el numero de votos afirmativos sea 3 y en caso contrario devolverá 0.

Si x1 vota 1, x2 vota 0, x3 vota 0 y x4 vota 1 la función booleana devolverá 0. Producto mínimo (es el número posible de casos) es un producto en el que aparecen todas las variables o sus negaciones.

El número posible de casos es 2n

Siguiendo con el ejemplo anterior. Asignamos las letras A, B, C y D a los amigos. Los posibles casos son:

Votos Resultado

ABCD#

1111 1

1110 1

1101 1

1100 0

1011 1

1010 0

1001 0

1000 0

0111 1

0110 0

0101 0

0100 0

0011 0

0010 0

0001 0

0000 0

Las funciones booleanas se pueden representar como la suma de productos mínimos (mini términos) iguales a 1.

En nuestro ejemplo la función booleana será: f(A, B, C, D) = ABCD + ABCD' + ABC'D + AB'CD + A'BCD

Diagramas De Karnaugh

Los diagramas de Karnaugh se utilizan para simplificar las funciones booleanas. Se construye una tabla con las variables y sus valores posibles y se agrupan los 1 adyacentes, siempre que el número de 1 sea potencia de 2. En esta página tienes un programa para minimización de funciones booleanas mediante mapas de Karnaugh

LA SUERTE ES LA ESPERANZA DEL HOMBRE MEDIOCRE